
Electronics
Programming 102

When using a push button
switch, we can use the
pinMode(pin, INPUT_PULLUP)
to send a current through the
pin.

That way it reads HIGH when
the button is neutral, and LOW
when the button is pressed,
because the current is then
pulled through the switch to
the GND.

Programming 102 >> Pullup

Variables are used to store
data that can change (as
opposed to constants, which
contain the same information
for the whole programme).

We’ll use variables to hold the
data being input to the
programme, for example the
values read by the sensors.

Programming 102 >> Variables

When we declare the variable
we can give in an initial value
or leave it empty until it
receives data.

int photo_input = 513;

Or just:

int photo_input;

Programming 102 >> Variables

In most cases we’ll insert data
into the variables using either
digitalRead() or analogRead().
The syntax is simple:
digitalRead(pin), or
analogRead(pin)

For example:

photo_input = analogRead(3);

What this does is store
whatever value is read from pin
number 3 into the variable
named photo_input. If there
was a value there before it will
replace it.

Programming 102 >> Variables

int photo_input = 0;

void setup() {

}

void loop() {

 // put your main code here, to run repeatedly:

photo_input = analogRead(3);

map() is used to remap
numbers from one range to
another.
The syntax is:

Programming 102 >> Variables >> Map

map(value, fromLow, fromHigh, toLow, toHigh)

This is most often used to
remap analog values (that
range from 0 to 1023) to
another range that is useful for
our programme.
This could be brightness of a
light, speed of a motor etc

fromLow fromHigh

toLow toHigh

value

new value

For example, the following
code maps the analog input
from a potentiometer to the
brightness value of an LED.

First the value from the
potentiometer is assigned to
the variable poten_val.
Then the variable brightness
gets assigned the returned
value of the map() calculation.
In this case our new range
starts from 10 so that the LED
is never completely off.

Programming 102 >> Variables >> Map

const int LEDpin =3;

int brightness;

int poten_val;

void setup() {

 pinMode(LEDpin, OUTPUT);

}

void loop() {

poten_val = analogRead(A0);

brightness = map(poten_val, 0, 1023, 10, 255);

analogWrite(LEDpin, brightness);

delay(1000);

}

An if statement is used to run
parts of the code only if some
condition holds.

Conditions are statements that
are evaluated to boolean
values. If the statement is
TRUE then the code will run,
otherwise it will be skipped.
The syntax is:

if (condition) {
 //statement(s)
}

Programming 102 >> If

In different loops or statements
we will test conditions in order
to execute some parts of code,
but not others.
The result of a condition is a
boolean value, either TRUE or
FALSE.
If the condition is TRUE, the
following block of code will be
executed.
The operators are:
x == y (x is equal to y)
x != y (x is not equal to y)
x < y (x is less than y)
x > y (x is greater than y)
x <= y (x is less than or equal to y)
x >= y (x is greater than or equal to y)

Programming 102 >> Comparison operators

Note that in evaluating a
statement we use a double
equal sign:

If (x == y){
}

The single equal sign is used in
coding to assign values to
variables.
For example when declaring a
variable:

int photo_input = 513;

Programming 102 >> Comparison operators

We can also test for more than
one condition.

&& means and

|| means or

In the first condition, the LED
will only turn on if both buttons
are pressed.

In the second condition, the
LED can be turned on by
pressing either button.

void loop() {

if(button_1 == HIGH && button_2 == HIGH){

 digitalWrite(LED_pin, HIGH);

}

if(button_1 == HIGH || button_2 == HIGH){

 digitalWrite(LED_pin, HIGH);

}

}

Programming 102 >> Comparison operators

The else statement is used to
execute an alternative part of
code when the if condition
doesn’t hold.

This means that only one block
of code will be executed, but
never both.

Programming 102 >> If >> Else

if (temperature >= 70) {

 Serial.print("Danger! Shut down the system.");

}

 else { // temperature < 70

 Serial.print("Safe! Continue usual tasks.");

 }

else if can be used to test
another condition and only
execute something if that
holds instead.

In this case, each step will only
be checked if the previous
conditions weren’t met.

if (temperature >= 70) {

 Serial.print("Danger! Shut down the system.");

}

 else if (temperature >= 60) { // 60 <= temp < 70

 Serial.print("Warning! User attention required.");

 }

 else { // temperature < 60

 Serial.print("Safe! Continue usual tasks.");

 }

Programming 102 >> If >> Else

Programming 102 >> If >> Else

If (condition)

TRUE FALSE

{ code 1} If else (condition)

TRUE FALSE

{ code 2} else

{ code 3}

Rest of code

if (temperature >= 70) {

 Serial.print("Danger! Shut down the system.");

}

 else if (temperature >= 60) { // 60 <= temp < 70

 Serial.print("Warning! User attention required.");

 }

 else { // temperature < 60

 Serial.print("Safe! Continue usual tasks.");

 }

Loops are used to execute
portions of code again and
again, a set number of times or
until a certain condition is met.

The main portion of the
arduino porgramme is a loop
which doesn’t have a
condition, so it runs forever.

We can also add loops into our
code to repeat portions of
code or do something until a
parameter changes.

Programming 102 >> Loops

A while loop will loop
continuously, and infinitely,
until the expression inside the
parenthesis, () becomes false.
The syntax is:

while (condition) {
 // statement(s)
}

Something must change the
tested variable, or the while
loop will never exit. This could
part of the code, such as an
incremented variable, or an
external condition, such as
testing a sensor.

Programming 102 >> Loops >> While

The serial monitor is used by
arduino to communicate data
with the computer.

We can use it to display
information from the code, or
to input information to the
code.

The serial monitor can be
found at the bottom of the IDE.

Programming 102 >> Serial communication

In order to use the the serial
monitor we need to enable it.
We do this using the following
function under the setup()
section, because this function
needs to only run once:

Serial.begin(9600);

The number 9600 is the
baudrate, or the speed that the
monitor refreshes. We’ll use
9600 and make sure the
monitor is on 9600 as well.

Programming 102 >> Serial communication

In order to display a message
or data to the user, we can
print information to the
monitor. This can be done
using

Serial.print()
Or
Serial.println()

Both print the value directly
next to the previous content,
and we’ll use the second if we
want to start a new line directly
after.

Programming 102 >> Serial communication >> Print data

void setup() {

Serial.begin(9600);

}

void loop() {

 // put your main code here, to run repeatedly:

Serial.print("Message here: ");

Serial.println("message");

delay(1000);

}

Serial Monitor:

Message here: message

Message here: message

If we want to add a new line in
a specific location, we can use
the character “\n”.

Programming 102 >> Serial communication >> Print data

void setup() {

Serial.begin(9600);

}

void loop() {

 // put your main code here, to run repeatedly:

Serial.print("\n" "Message here: ");

Serial.print("message");

delay(1000);

}

Serial Monitor:

Message here: message

Message here: message

Message here: message

“ “ are used to contain string,
or text.

We can also print a integer
directly, or print the value of a
variable by calling the variable
name.

Programming 102 >> Serial communication >> Print data

int num = 5;

void setup() {

Serial.begin(9600);

}

void loop() {

 // put your main code here, to run repeatedly:

Serial.print("The number is: ");

Serial.println(num);

delay(1000);

}

Serial Monitor:

The number is: 5

The number is: 5

The number is: 5

We can also use the serial
monitor to have the user input
data to the code.

We do that by putting our data
into the message line.

Programming 102 >> Serial communication >> Read data

We then tell the code to expect
data and then read it.
We will use a different function
to read the data depending on
the type of data we are
inputting:

Serial.parseInt() for numbers
or
Serial.readString() for text

Programming 102 >> Serial communication >> Read data

In order for the programme to
wait until an input was sent
through the monitor, we’ll use
a while loop.

while (Serial.available() == 0){
}

The Serial.available() checks if
there is data in the command
line. If it’s empty, it will return
zero and therefore the loop will
execute the empty brackets
and immediately check again.
Once there is any data
entered, it no longer equals
zero and the code will continue
past the loop.

Programming 102 >> Serial communication >> Read data

Once we receive data from the
serial monitor we need to store
it in a variable in order to use it
in the rest of our code.
Let’s say we declared a
variable:

String userInput;

We will store the data in it like
so:

userInput = Serial.readString();

Now the variable userInput will
contain whatever message the
user entered.

Programming 102 >> Serial communication >> Read data

