

Websites: what, why and how

We will document the course
on **personal websites**

Documentation includes:

Visual (video, photo)

Textual (explanations, ideas,
thoughts, complications and
overall process)

Connections (links,
references)

In order to encourage the
flow of information between
courses - you learn for
previous years, and share
what you learn for the next.

Additionally, **we evaluate
your work through your
website.**

However you like,
We recommend WIX – free,
easy to use.

**Each week you must
upload your work and
process to your site.**

Websites - References

<https://albinotonnina.com/>

הקוד נמצא בGitHub

מה טוב בזה:

מעניין, מורכב, ברור, מעבר נוח ליצירת קשר, מעיד על אישיות

מה פחות:

מאוד לינארי

<https://bruno-simon.com/>

מה טוב בזה:

כיף, מעניין, מורכב, הרבה אינפורמציה (עולם אין סופי), מעיד על אישיות

מה פחות:

לוקח זמן, לא בטוח שיכולים הגיעו לכל המידע

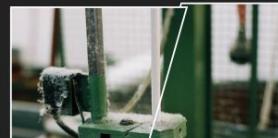
sharpen

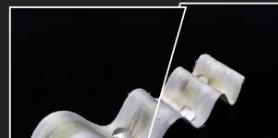
Drawsheet with burr cut

Tenon lock

Thermal wood modification

Neon glass bubbles


Horizontal stepped spigot


Arch structuring

Round braids

Delignify

<https://materialarchiv.ch/de/?type=all>

מה טוב בזה:

מסודר ונוח, הרבה אינפורמציה, נוח לשימוש וחיפוש, פורמט אחיד להציג
מידע בצוורה בהירה.

מה פחות:

אין היררכיה - בغالל שהאטרים שלכם יהיו של תהלייר, צריך יותר היררכיה
ושדר על צרי זמן

Lab Websites and Similar Courses

Application

Schedule

- 09/06: [introduction, computer-aided design](#)
recitation (9/07 5:00-6:00): [parametric design \(video\)](#)
- 09/13: [project management, computer-controlled cutting](#)
recitation (9/14 5:00-6:00): [version control \(video\)](#)
- 09/20: [embedded programming](#)
recitation (09/21 5:00-6:00): [AI \(video\)](#)
- 09/27: [3D scanning and printing](#)
recitation (9/28 5:00-6:00): [electronics \(video\)](#)
- 10/04: [electronics design](#)
recitation (10/05 5:00-6:00): [EDA \(video\)](#)
- 10/11: [electronics production](#)
recitation (10/19 5:00-6:00): [how to debug \(almost\) anything \(video\)](#)
- 10/18: [molding and casting](#)
recitation (10/12 5:00-6:00): [CAM \(video\)](#)
- 10/25: [computer-controlled machining](#)
recitation (10/26 5:00-6:00): [sustainable materials \(video\)](#)
- 11/01: [input devices](#)
recitation (11/02 5:00-6:00): [signal processing \(video\)](#)
- 11/08: [output devices](#)
recitation: (11/09 5:00-6:00): [artificial muscles \(video\)](#)
- 11/15: [networking and communications, midterm review](#)
recitation (11/16 5:00-6:00): [embedded architectures, device profiles \(video\)](#)
- 11/22: [interface and application programming](#)
recitation (11/27 5:00-6:00): [machine building \(video\)](#)
- 11/29: [mechanical, machine design](#)
recitation (11/30 5:00-6:00): [machine building \(video\)](#)
- 12/06: [wildcard week](#)
recitation (12/7 5:00-6:00): [why make \(almost\) anything \(video\)](#)
- 12/08: final assignments/orders
- 12/13: project development
- 12/19: project presentation
 - prep*: 9:00-1:30
 - final exam*: 1:30-4:30
 - open house*: 5:00-6:30

<http://fab.cba.mit.edu/classes/MAS.863/>

אטר קורס - how to make almost anything -

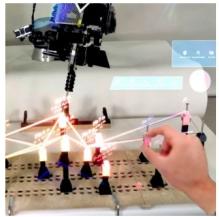
מה טוב בזה:

מסודר, הרבה אינפורמציה

מה פחות:

לא מעוצב, לינארו

Jan 12-16: [instructor boot camp](#)
Jan 19-24: [student boot camp](#), project presentations
Jan 25: [principles and practices \(video\)](#), [presentations \(video\)](#), [project management \(video, review\)](#)
 Jan 30 recitation: [version control \(video\)](#)
Feb 01: [computer-aided design \(video, review\)](#)
Feb 08: [computer-controlled cutting \(video, review\)](#)
 Feb 13 recitation: [parametric, algorithmic, generative design \(video\)](#)
Feb 15: [embedded programming \(video, review\)](#)
Feb 22: [3D scanning and printing \(video, review\)](#)
 Feb 27 recitation: [programming \(video\)](#)
Mar 01: [electronics design \(video, review\)](#)
Mar 08: [computer-controlled machining \(video, review\)](#)
 Mar 13 recitation: [debugging \(video\)](#)
Mar 15: [electronics production \(video, review\)](#)
Mar 22: [output devices \(video, review\)](#)
 Mar 27 recitation: [machine building \(video\)](#)
Mar 29: [mechanical design, machine design \(video, review\)](#)
Apr 05: [break, midterm review](#)
Apr 12: [input devices \(video, review\)](#)
 Apr 17 recitation: [fab ecosystem \(video\)](#)
Apr 19: [molding and casting \(video, review\)](#)
Apr 26: [networking and communications \(video, review\)](#)
 May 01 recitation: [education \(video\)](#)
May 03: [interface and application programming \(video, review\)](#)
May 10: [wildcard week \(video, review\)](#)
 May 15 recitation: [Fab All-In \(video\)](#)
May 17: [applications and implications \(video, review\)](#)
May 24: [invention, intellectual property, and income \(video, review\)](#)
 May 29 recitation: [start-ups \(video\)](#)
May 31: [project development \(video\)](#)
Jun 07-: [project presentations \(7, 9, 12, 14\)](#)
Jul 25-29: FAB23

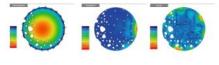


De

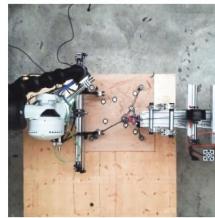
<https://gramaziokohler.arch.ethz.ch/web/e/lehre/211.html>

2022


Augmented Intuition

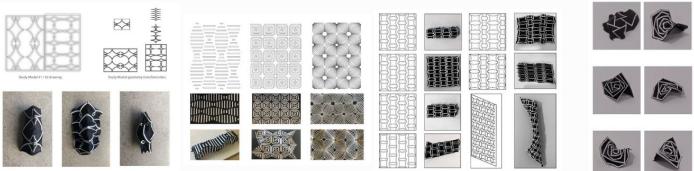

Curve-Fit

Embraced Wood


Hybrid-Active Winding

Interactive Design
Method for Irregular
Column Layouts

Self-Formed Substrate


Slack Pack

<https://www.itech.uni-stuttgart.de/>

Approach

Ultimaker 3D printers with print beds limited to 8.8"X10.5", at the Autodesk Technology Center, were used to explore two different techniques of 3D printing on fabric to add new dimensions to the material.

- 1- By printing a precise 2-dimensional pattern, a shape can self-transform after being released from the machine. By changing the pattern design and thickness of the 3D printed layer on stretched textiles, then released after printing, students explored how to design pre-programmed shapes out of two-dimensional design and fabrication process. The combination of stretch fabric and printed patterns offers both flexibility and stability.
- 2- By printing on the flexible materials (Fabric), rigidity is added to specific locations. By distributing flexibility and rigidity on a surface, different pre-designed shapes out of 2d surfaces are explored.

<http://digitalcraft.cca.edu/>

- 1st TERM

Introductory Studio G1

Introductory Studio G2

Introductory Studio G3

/ SO.1 - Introduction to Digital Fabrication

SO.2 - Advanced Architecture Concepts

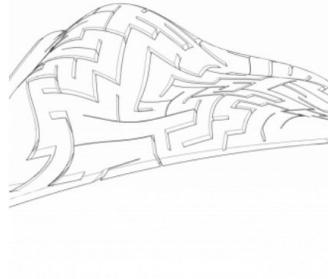
SO.4 - Introduction to Programming and Physical Computing

SO.3 - Computational Design

- 2nd TERM

RS.I - X-Urban Design

RS.II - Self Sufficient Buildings


RS.III - Digital Matter

RS.IV - Advanced Interaction

SO.5 - Computational Design

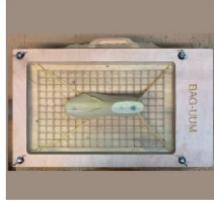
SE1 - Digital Design for Living Systems

SE2 - Data Informed Structures

<https://www.iaacblog.com/programs/courses/maa-01/2019-2020-maa01/so-1-introduction-to-digital-fabrication-maa01-2019-2020-1st/>

FABRICADEMY 20217-23 OS MACHINES

FAB LAB: DIY Built / Hacked Machines, Parts, Tools

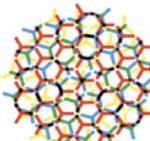

<https://class.textile-academy.org/projects/>

Vacuum Machine -
2022

Vacuum Box - 2021

Vacuum Box - 2020

DIY Shredder 2022


Printing Press
Machine - 2022

Print Making Tools -
2021



Silicone Applicator -
2017

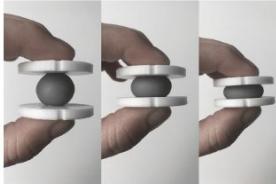
Lasercut Stencil tools
2023

Websites that present processes

00
FINAL**01**
COMPUTER-AIDED DESIGN**02**
COMPUTER CONTROLLED CUTTING**03**
ELECTRONICS PRODUCTION**04**
3D PRINTING & SCANNING**05**
ELECTRONICS DESIGN**06**
COMPUTER-CONTROLLED MACHINING

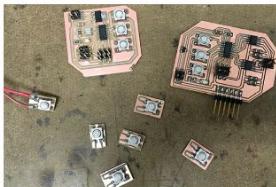
```
int main(void) {
  DDRB |= led_pin
  DDRA &= ~button_pin;
  PORTA |= button_pin;
  while (1) {
    if(PINA & button_pin) {
      PORTB &= ~led_pin;
    } else{
      PORTB |= led_pin;
    }
  }
}
```

07
EMBEDDED PROGRAMMING**08**
MOLDING AND CASTING


<http://fab.cba.mit.edu/classes/863.19/CBA/people/jack/index.html>

Computer-Controlled Cutting

Electronics Production


3D Printing and Scanning

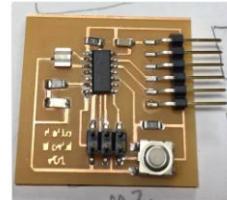
Molding and Casting

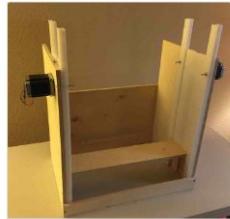
Input Devices

Output Devices

Wildcard Week

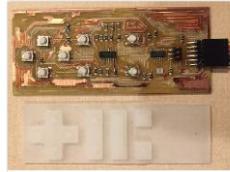
Final Project

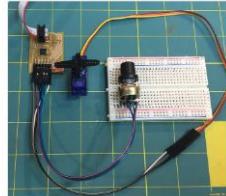

<http://fab.cba.mit.edu/classes/863.19/Architecture/people/Lavender/index.html>

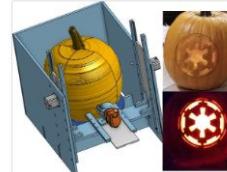

Electronics Production

3D Scanning + Printing

Electronics Design

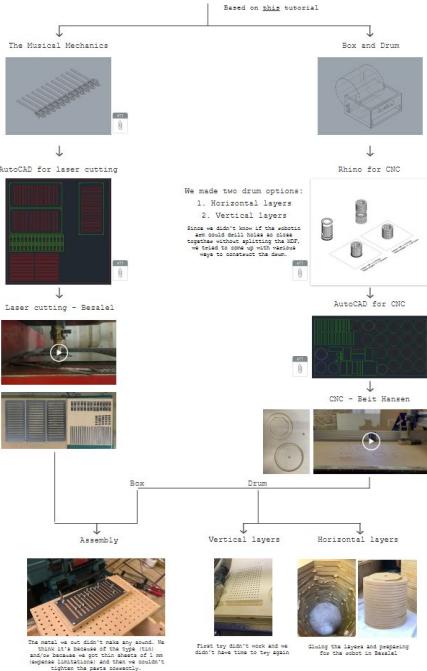

Computer Controlled
Machining


Embedded Programming

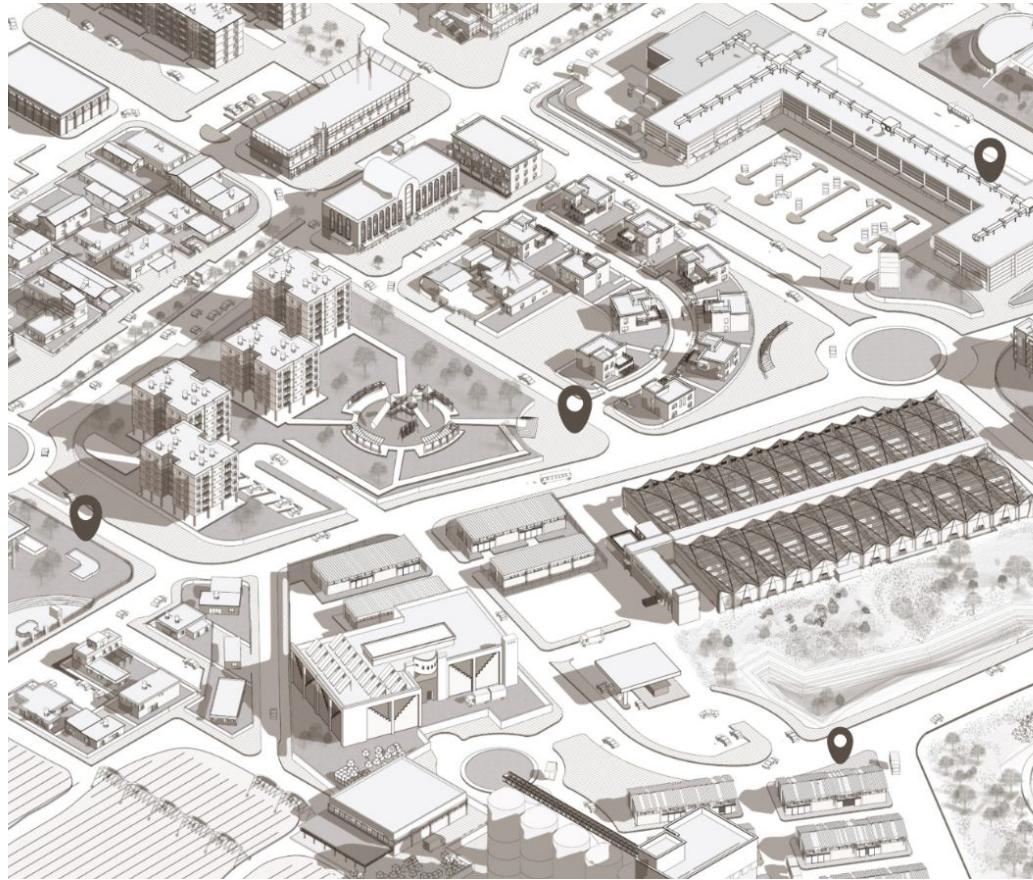

Molding and Casting

Input Devices

Output Devices

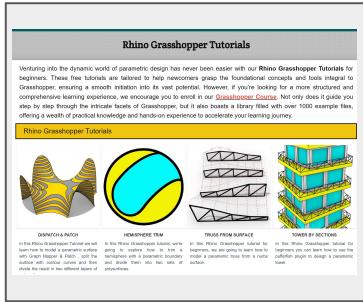

Applications and
Implications

<https://fabacademy.org/2019/labs/vancouver/students/peter-holm/index.html>


Construction | Disruption

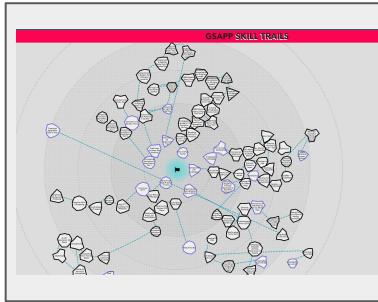
MUSIC Box

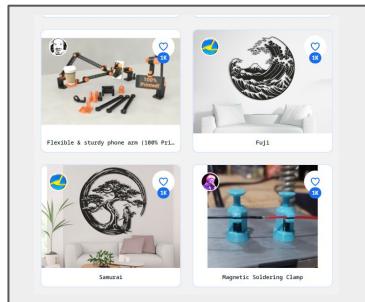
We have no words to express our gratitude towards Pinchas and Dodi from Bezalel's workshop, Yarden from Beit Hansen's, and Avi from the architecture department. We couldn't have done anything without their help and kindness. Thank you so much.

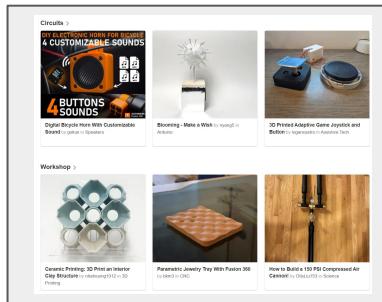


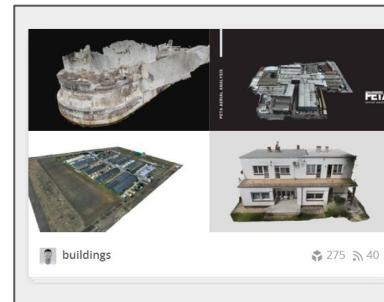
<https://disruptionconstruc.wixsite.com/website>

<https://www.ofarofakim.com/>


Helpful websites and tutorials


<https://parametrichouse.com/rhino-grasshopper/>


<https://class.textile-academy.org/tutorials/>


<https://skilltrails.gsapp.org/#/map>

<https://www.thingiverse.com/>

<https://www.instructables.com/>

<https://sketchfab.com/>

<https://www.mcmaster.com/>

Guidelines:

1. Document the work process and not just the product (think of the the site as a learning log) - conceptual development, trials, difficulties, failures and solutions.
2. The documentation should be textual (verbal explanation of the process and learning) and visual (images, videos and files).
3. You can use and learn from existing projects, if so you should refer to them and describe what you changed / learned from them.
4. The site should be in English, and needs to be updated every week.
5. The site must include a homepage + a separate page for each task with its own explanation.